246 research outputs found

    Nonprehensile Object Transportation with a Legged Manipulator

    Get PDF
    This paper tackles the problem of nonprehensile object transportation through a legged manipulator. A whole- body control architecture is devised to prevent sliding of the object placed on the tray at the manipulator’s end-effector and retain the legged robot balance during walking. The controller solves a quadratic optimization problem to realize the sought transportation task while maintaining the contact forces between the tray and the object and between the legs and the ground within their respective friction cones, also considering limits on the input torques. An extensive simulation campaign confirmed the feasibility of the approach and evaluated the control performance through a thorough statistical analysis conducted varying mass, friction, and the dimension of the transported object

    Dexterous Grasping by Manipulability Selection for Mobile Manipulator with Visual Guidance

    Get PDF
    Industry 4.0 demands the heavy usage of robotic mobile manipulators with high autonomy and intelligence. The goal is to accomplish dexterous manipulation tasks without prior knowledge of the object status in unstructured environments. It is important for the mobile manipulator to recognize and detect the objects, determine manipulation pose, and adjust its pose in the workspace fast and accurately. In this research, we developed a stereo vision algorithm for the object pose estimation using point cloud data from multiple stereo vision systems. An improved iterative closest point algorithm method is developed for the pose estimation. With the pose input, algorithms and several criteria are studied for the robot to select and adjust its pose by maximizing its manipulability on a given manipulation task. The performance of each technical module and the complete robotic system is finally shown by the virtual robot in the simulator and real robot in experiments. This study demonstrates a setup of autonomous mobile manipulator for various flexible manufacturing and logistical scenarios

    Task-Oriented Contact Optimization for Pushing Manipulation with Mobile Robots

    Get PDF
    This work addresses the problem of transporting an object along a desired planar trajectory by pushing with mobile robots. More specifically, we concentrate on establishing optimal contacts between the object and the robots to execute the given task with minimum effort. We present a task-oriented contact placement optimization strategy for object pushing that allows calculating optimal contact points minimizing the amplitude of forces required to execute the task. Exploiting the optimized contact configuration, a motion controller uses the computed contact forces in feed-forward and position error feedback terms to realize the desired trajectory tracking task. Simulations and real experiments results confirm the validity of our approach

    Towards a self-collision aware teleoperation framework for compound robots

    Get PDF
    This work lays the foundations of a self-collision aware teleoperation framework for compound robots. The need of an haptic enabled system which guarantees self-collision and joint limits avoidance for complex robots is the main motivation behind this paper. The objective of the proposed system is to constrain the user to teleoperate a slave robot inside its safe workspace region through the application of force cues on the master side of the bilateral teleoperation system. A series of simulated experiments have been performed on the Kuka KMRiiwa mobile robot; however, due to its generality, the framework is prone to be easily extended to other robots. The experiments have shown the applicability of the proposed approach to ordinary teleoperation systems without altering their stability properties. The benefits introduced by this framework enable the user to safely teleoperate whichever complex robotic system without worrying about self-collision and joint limitations

    Portable dVRK: an augmented V-REP simulator of the da Vinci Research Kit

    Get PDF
    The da Vinci Research Kit (dVRK) is a first generation da Vinci robot repurposed as a research platform and coupled with software and controllers developed by research users. An already quite wide community is currently sharing the dVRK (32 systems in 28 sites worldwide). The access to the robotic system for training surgeons and for developing new surgical procedures, tools and new control modalities is still difficult due to the limited availability and high maintenance costs. The development of simulation tools provides a low cost, easy and safe alternative to the use of the real platform for preliminary research and training activities. The Portable dVRK, which is described in this work, is based on a V-REP simulator of the dVRK patient side and endoscopic camera manipulators which are controlled through two haptic interfaces and a 3D viewer, respectively. The V-REP simulator is augmented with a physics engine allowing to render the interaction of new developed tools with soft objects. Full integration in the ROS control architecture makes the simulator flexible and easy to be interfaced with other possible devices. Several scenes have been implemented to illustrate performance and potentials of the developed simulator

    INTORNO AL MONDO IN CINQUANT’ANNI: VIAGGIO ALLA MANIERA DI ULISSE ATTRAVERSO LA POESIA DI HÉDI BOURAOUI (1966-2016)

    Get PDF
    This is a review article on Transpoétiquement vôtre. Anthologie (1966-2016) / Transpoeticamente vostro. Antologia (1966-2016), a selection of Hédi  Bouraoui’s poetry over 50 years, edited and translated into Italian by Mario Selvaggio, who also provides the Introduction. Hédi Bouraoui has written an Avant-Propos looking back over a long writing career. The article compares his career to a Ulyssean voyage, and sees him as a Nomad of language, of cultures, of Otherness. This article has also been translated into French and Italian (see below)

    Enhancing airplane boarding procedure using vision based passenger classification

    Get PDF
    This paper presents the implementation of a new boarding strategy that exploits passenger and hand-luggage detection and classification to reduce the boarding time onto an airplane. A vision system has the main purpose of providing passengers data, in terms of agility coefficient and hand-luggage size to a seat assignment algorithm. The software is able to dynamically generate the passenger seat that reduces the overall boarding time while taking into account the current airplane boarding state. The motivation behind this work is to speed up of the passenger boarding using the proposed online procedure of seat assignment based on passenger and luggage classification. This method results in an enhancement of the boarding phase, in terms of both time and passenger experience. The main goal of this work is to demonstrate the usability of the proposed system in real conditions proving its performances in terms of reliability. Using a simple hardware and software setup, we performed several experiments recreating a gate entrance mock up and comparing the measurements with ground truth data to assess the reliability of the system

    A fast airplane boarding strategy using online seat assignment based on passenger classification

    Get PDF
    The minimization of the turnaround time, the duration which an aircraft must remain parked at the gate, is an important goal of airlines to increase their profitability. This work introduces a procedure to minimize of the turnaround time by speeding up the boarding time in passenger aircrafts. This is realized by allocating the seat numbers adaptively to passengers when they pass the boarding gate and not before. Using optical sensors, an agility measure is assigned to each person and also a measure to characterize the size of her/his hand-luggage. Based on these two values per passenger and taking into account additional constraints, like reserved seats and the belonging to a group, a novel seat allocation algorithm is introduced to minimize the boarding time. Extensive simulations show that a mean reduction of the boarding time with approximately 15% is achieved compared to existing boarding strategies. The costs of introducing the proposed procedure are negligible, while the savings of reducing the turnaround time are enormous, considering that the costs generated by inactive planes on an airport are estimated to be about 30 $ per minute

    Haptic-Based Shared-Control Methods for a Dual-Arm System

    Get PDF
    We propose novel haptic guidance methods for a dual-arm telerobotic manipulation system, which are able to deal with several different constraints, such as collisions, joint limits, and singularities. We combine the haptic guidance with shared-control algorithms for autonomous orientation control and collision avoidance meant to further simplify the execution of grasping tasks. The stability of the overall system in various control modalities is presented and analyzed via passivity arguments. In addition, a human subject study is carried out to assess the effectiveness and applicability of the proposed control approaches both in simulated and real scenarios. Results show that the proposed haptic-enabled shared-control methods significantly improve the performance of grasping tasks with respect to the use of classic teleoperation with neither haptic guidance nor shared control
    • …
    corecore